Geography Geology 308/508

CLIMATE: PAST, PRESENT AND FUTURE

Spring 2023

Instructor: Samantha Kaplan

Office: D-327 Science Building

Office Hours: Tuesdays 11-12, Thursday 2-3, and by appointment

Main Office Telephone: 715-346-2883

Email: <u>skaplan@uwsp.edu</u>

Required Rental Textbook:

• Ruddiman, William, 2014. *Earth's Climate, Past and Future* (third ed.). New York: W.H. Freeman and Company, 445 p.

Online Textbooks

- Bloom, Arnold, 2020, Climate Change Causes Consequences and Solutions. University of California-Davis. Licensed under the Creative Commons. <u>https://indd.adobe.com/view/8f2ed4a1-a1b0-4f12b5bb-5009bbbad0f3</u>
- Schmittner, Andreas, 2018, Introduction to Climate Science. Corvallis: Oregon State University Ecampus. 245 p. Licensed under the Creative Commons. https://open.oregonstate.education/climatechange/
- Weart, Spencer, 2022, *The Discovery of Global Warming*. The American Institute of Physics. https://history.aip.org/climate/index.htm

Students with Disabilities: Students with learning and/or physical challenges that make classroom learning difficult are encouraged to contact me right away (in addition to Disability Services) to make special arrangements for taking lecture notes or exams.

Course Description: 3 Credits. Earth's climate is always changing. Different factors, including geological, astronomical, atmospheric, oceanic, biological, and human, operate at different time scales to change the climate of our planet. This course focuses on evidence of climate change in the past, modern climate variability, and the range of theories and arguments regarding future climate scenarios. We will study the field and research methods used to investigate past climate, as well as how climate models are used to explore future climatic trends, including global warming.

Learning Outcomes: Upon completion of this course:

- Students will be able to explain the workings of earth's climate system and the processes affecting climate over timescales ranging from years to millennia.
- Students will be able to demonstrate how interactions among the atmosphere, oceans and land combine to influence climate.
- Participants will be able to recognize how humans have affected the climate and be able to identify how past climate changes can be used to understand possible future climate change.
- Students will acquire the necessary tools and background to decipher climate change fact from fiction and make informed decisions about future climate policy.

Student rights and responsibilities

- UWSP has guidelines regarding student rights and responsibilities in class and on campus. These are outlined on the Dean of Student's website and in the Student Handbook. Do review these resources if you have not already:
 - o <u>https://www.uwsp.edu/dos/Pages/stu-conduct.aspx</u>
 - o <u>https://www.uwsp.edu/dos/Pages/stu-academic.aspx</u>
 - o <u>https://www.uwsp.edu/dos/Pages/handbook.aspx</u>
 - o <u>https://www.uwsp.edu/dos/Documents/AcademicIntegrityBrochure.pdf</u>
 - o https://www.uwsp.edu/dos/Documents/UWSP14-Final2019.pdf

Classroom Policies

.

- No talking, texting, scrolling, surfing, or listening to music during class. This is disruptive and discourteous to your peers and to the professor. Phones and other electronic devices must be turned off. Laptops and tablets may be used for note-taking, but only with prior approval. Any student found violating these rules will be asked to leave the classroom.
- Attendance is required at all class sessions and counts towards your grade. If you have to miss class, it is your responsibility to inform the instructor ahead of time and get notes from a peer.
- I do not post lecture notes on-line and I do not share my lecture notes with students. Please do not ask. If you miss class, it is your responsibility to get the notes from a classmate. I will post Power Point lecture slides following class (not before).

Grades		Percent	Letter Grade
Evaluation		≥93	А
		90-92.9	A-
Exams (3 @ 13% ea)	39%	87-89.9	B+
Attendance Exercises (7 @ 6% ea) Other Assignments Total	8%	83-86.9	В
	42% 11% 100%	80-82.9	B-
		77-79.9	C+
		73-76.9	С
Final Letter Grades: Letter grades will be assigned as follows:		70-72.9	C-
		67-69.9	D+
		63-66.9	D
		≤62.9	F

Class Schedule (Tentative)

Dat ⊤	e 24-Jan	Class Topic Course overview, weather vs. climate	Reading Arnold Ch. 1	Assignment Due
R	26-Jan	Solar forcing	Ruddiman Ch. 1	Bryson
T R	31-Jan 2-Feb	The atmosphere Greenhouse gases & aerosols	Ruddiman Ch. 2 p. 19-39 Ruddiman Ch. 20	
T R	7-Feb 9-Feb	Earth's Energy budget The oceans & ENSO	Ruddiman Ch. 2 p. 32-39 Ruddiman Ch. 2 p. 40-53	Carbon Cycle
T R	14-Feb 16-Feb	Long-term climate, Earth's thermostat Climate and plate tectonics	Ruddiman Ch. 4 Ruddiman Ch. 5	Energy budget
T R	21-Feb 23-Feb	Cretaceous & Tertiary climate NO CLASS - Movie: Snowball Earth	Ruddiman Ch. 6, Ch. 7 The Habitable Planet	
T R	28-Feb 2-Mar	Earth's orbit and the ice ages EXAM 1	Ruddiman Ch. 8	Snowball Earth
т	7-Mar	The Pleistocene and Last Glacial Maximum	Ruddiman Ch. 10	
R	9-Mar	Climate proxies and archives	Ruddiman Ch. 3 p. 55-69; Ch. 11 p. 215-218; Ch. 13	
T R	14-Mar 16-Mar	Deglacial climate Holocene climate	Ruddiman Ch. 3 p. 55-69, Ch. 13 Ruddiman Ch. 14, 15	Ice cores
T R	21-Mar 23-Mar	SPRING BREAK SPRING BREAK		
т	28-Mar	The last 2000 years	Ruddiman Ch. 17, Ruddiman Ch. 19	
R	30-Mar	Modern climate - what is normal?	Ruddiman Ch. 20	
⊤ R	4-Apr 6-Apr	Climate Data EXAM 2		
т	11 Apr	Colontific conconsus and uncortainty	Ruddiman Ch. 20	Time Series Analysis
T R	11-Apr 13-Apr	Scientific consensus and uncertainty, The IPCC and future scenarios	Ruddiman Ch. 21, IPCC AR6	
т	18-Apr	Climate Models	Ruddiman Ch. 3 p. 69-74; IPCC AR6	Climate Data
R	20-Apr	CMIP	IPCC AR6 WG I, CMIP video	
T R	25-Apr 27-Apr	Downscaled models and climate impacts Climate impacts	IPCC AR6 WG I NCA4; IPCC AR6 WG II	Climate Models
т	2-May	International agreements		
R	4-May	Global energy infrastructure		
T R	9-May 11-May	Climate adaptation and mitigation Climate adaptation and mitigation	IPCC AR6 WG II IPCC AR6 WG III	Climate Future
R	16-May	EXAM 3 12:30 - 2:30 PM		